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Abstract

This paper describes a Bayesian method for combining information from multiple

images of the saxne surface to construct a super-resolved surface model. We develop the
theory and algorithms in detail for the 2-D surface reconstruction problem, and show

the results on actual images. These results show dramatic improvements in resolution.

The Bayesian approach uses neighbor correlation information as well as combining

information from multiple images. The reconstructed surfaces have both significantly

higher spatial resolution _nd grey scale resolution. We show how this theory can be

extended to super-resolved 3-D surface reconstruction from multiple images, such as a
series of frames from a moving TV camera. We also show that this approach can be

applied to diffraction blurred images, offering the possibility of resolving images below

the wavelength of light.
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1 Introduction

Consider the problem of how to extract as much information as possible from multiple

images of the same scene, and of capturing this information in the form of a surface model
at maximal resolution. This problem is important in many applications where maximal

resolution is paramount, or where our goal is to discern fine surface detail. We here focus

on space-based remote imaging.
We view this problem of surface reconstruction from multiple images as an example

of an inverse problem--if we knew exactly the shape and refiectivity of the surface, the

illumination conditions, the camera angle, etc., we could predict what the camera would

see (pixels) to within the measurement accuracy. This is the image prediction problem
addressed by computer graphics. Unfortunately, we have the inverse problem--we have the

observed images (pixels) and must use this information to find the most probable surface

that could have generated these images. Bayes theorem provides a formal solution to inverse

problems, which we apply here to the surface reconstruction problem.
Because the reconstructed surface is only determined to within a certain maximum

spatial resolution, we represent surfaces by a discrete uniform grid, at high spatial resolution,

with the surface properties given at each grid point. For a planet like Mars, these surface

properties include latitude, longitude, illumination, slope angle, slope direction, reflectivity

at different wavelengths, etc. These are basically the properties that locate and characterize

the grid point and describe how it could influence the image pixelz. This surface grid
is a reconstruction and is not what was actually observed. For this reason we call the

surface grid values rnlxels (for Model plxels) to distinguish them from pLxels which are

the observed intensities. Unfortunately, in much of the vision literature, the word pixel is

used interchangeably to refer to both inferred and observed values.

We are able to get super-resolved reconstructions from many images because each pixel

of each image is a new sample of some patch on the observed surface. Two images generated
with ezactly the same alignment between the camera and the surface, and the same illumina-

tion conditions, might record the same information, resulting in no net gain of information.

With slightly differing alignments however, the observed pixel values will be different. By

relating these differences to locations on the surface, it is possible to reconstruct a model

grid at a finer resolution than the observation pixilation. This technique for combining over-

lapping information is closely related to deconvolution (e.g. radar imaging) and computed

tomography (e.g. CAT scan), and is explained in more detail in section 3.
We start by considering 2-D surface reconstruction. This is the best that can be achieved

when the images are taken from essentially the same camera position, with the same relative

sun angle, but with slight different registrations. This occurs with Landsat images, for
example, where each location on Earth is imaged with only approximately constant location

and orientation. The 2-D reconstruction gives the "reflectivity" of the surface, which is a

combination of the effects of surface albedo, illumination conditions and ground slope. We

develop this theory in detail in section 2, and show its application to actual images. This
theory includes the use of prior knowledge in the form of neighbor correlations. In section

5, we outline how to extend this approach to full 3-D surface reconstruction, where images

from different directions allow us to separate of the effects due to albedo from those due to

ground slope.

2 2-D Surface Reconstruction

Our approach is based on Bayesian probability theory, and so uses a likelihood function,

defined as the probability of the observed data given a model of how that data was gen-

erated. This model of the observation process is normally parameterized with respect to



anything that affects the process. For the surface reconstruction from multiple images prob-
lem, these observational parameters include surface illumination, atmospheric modulation,
camera orientation, camera characteristics, optical distortions, and any data preprocessing.

Computational considerations may require that some of these parameters be simplified or
omitted, but doing so always entails some loss of precision. We have made several such

simplifications in the work described in this section. The mo6t important is that we model

the surface as a 2-D plane lacking curvature and local relief. The second is the substitution

of simple transformations (affme and quadratic) for the projective observation geometry and

for any optical and electronic distortions of the camera system. A third lies in using a pre-

processing step to deal with telemetry noise. For planetary images, we ignore atmospheric
attenuation.

In our approach, we begin by constructing a likelihood function that gives the probability

of each pixel, given the imaged surface and observation conditions. We take the likelihood
of the entire image to be just the product of likelihoods of each pixel; the measurement error

of a pixel is assumed to be (conditionally) independent of the value of its neighbors (i.e.

there is no pixel cross-talk in the camera). This independence assumption is symbolically

represented as:

Pr [all pixel values[observed params, surface model]

= Ii Pr [(pixel(p) =/, I observed params, surface mode_ (1)
P

We assume that the probability of an observed pixel value is normally distributed, so that

the likelihood of each pixel is given approximately by:

Pr _ixel(p) = Ip[observed pararns,surfacemodel] _ N[Ip lip, _]Alp (2)

where subscriptp refersto pixels,and N[z I _,_']isthe standard normal (or Gaussian)

distributionof z given a mean _zand standard deviation_r.AIp isthe differencebetween

adjacent intensityvaluesmi.e, the minimum observed grey-scaledifference.This approx-

imation isjust the trapezoid approximation to the integralof a normal distributionover

the intervalfrom l(p) to I(p)+AIp. The standard deviationcrofthe observed pixelsfrom

theirexpected valuesisassumed to be the same forallpixelsinallimages. This deviation

resultsfrom measurement error(especiallyquantisationerror)and model errorsofvarious

kinds (e.g.slightmis-registration,mixel value errors,etc.).Ifthese many sourcesof er-

ror are largelyindependent, then (because of the centrallimittheorem) the resultingerror

distributionshould be closeto normal,

In Eqn. 2, the term Ip representsthe expected intensityvalue for pixelp and isa

complex function of the observationparameters and surfacemodel. The parameters used

in determining 2_p,as used in likelihoodEqn. 2 are:

i. Registration Parameters: These geometric parameters definehow a pixelimage

maps onto the reconstructedmixel grid. Here, we use an anne transformation to

definea 2-D (camera) to 2-D (mixelgrid)function;

2. Mixel Values: This isthe model of the reconstructed2-D surfacerepresentedby a

_reflectivity"or intensityvalue at each gridpoint (mixel);

3. Point Spread Function (PSF): This functiondefineshow points on the surface

(mixels)contributeto the observed pixelsthrough the camera optics,as well as any

distortionproduced by camera readout;



4. Camera Shading: These parameters are necessary for cameras, such as Vidicon x,

with a nonuniform readout gain across the image plane. These parameters define a
scaling factor that varies depending on where on the image plane a particular pixel
falls.

The contribution of the above parameters to _?r is shown diagrammatically in Fig. 1.
When all the mixels and parameters relating mixels to pixels are known, it is )ossible to
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Figure 1: Parameters Relating Pixels to Mixels

calculate the expected value of a given pixel, Ip, by summing the contribution of each mixel
weighted by the PSF, as explained in the next section. This pixel prediction process is just

a mathematical representation of the corresponding optical process shown in Fig. 1.

In a maximum likelihood (ML) approach, the goal is to find the set of parameter values

that maximizes Eqn.( 1)--in particular, the ML estimates of the mixels is a way of recon-

structing an unknown surface from the multiple images. Note that finding the ML mixel
values is a way of solving the inverse problem (i.e. model from data) given the likelihood (i.e.

probability of data given model). When the resolution chosen for the mixel grid is orerdeter-

mined by the corresponding pixel values, the ML approach is a reasonable. The mixels are

overdetermined by the pixels when there is no value for the mixels (except by chance) which

can predict exactly all the pixel values. Unfortunately, the overdetermined situation means

that the mixel grid is at a coarser spatial resolution than is otherwise achievable. If the ML

approach is tried at too fine a resolution, the mixel values are underconstrained--i.e, there

are many mixel grids that would predict the pixel values exactly, and there is no principled

way of choosing among them.

The Bayesian approach used here is similar to the ML approach, but it uses additional

(prior) knowledge in the form of expectations about correlations among neighboring mixels.

This additional knowledge in the Bayesian maximum posterior (MP) estimate allows any

1 A Yidicon camera is an obsolete electron beam readout camera, such as treed in the Viking Orbiter

images shown in tlfis paper.



scale rnixel grid. If too coarse a mixel grid is used (i.e. the mixels are overdetermined by the

pixels), then the neighbor correlations have little effect, and the MP estimate is essentially
the same as the ML estimate. However, if a very fine grid is used (i.e. the mixels are

underdetermined), then the effect of the neighbor correlations competes with the fit to the

data to give a reasonable compromise result that uses aU the information, resolution is near
the borderline between underdetermined, where the neighbor correlation the noise in the

data. Details on finding the MP estimate are given in the next section.

3 MP Reconstruction

Given pixeldata and a classof imaging models, we want tojointlyestimate the rnixelgrid

intensitiestogetherwith other auxiliarymodel parameters. In a Bayesian approach one seeks

a combination ofalltheseparameters which has maximum posterior(MP) probability,which

isthe same (up to a normalization factor)as seekinga maximum jointprobability:

Joint Probability = Likelihood× Prior Probability

P[Mixels, Pixels,Pararns] = P[PixelsIMixels,Params] × P[Mixels, Params],

where "Mixels" refersto the set of allmixel values,"Pixels"refersto the set of allpixels

in allimages, and "Params" refersto the auxiliaryobservationalparameters (registration

parameters, PSF, etc.)listedabove.

Repeating Eqn. 2,the likelihoodterm is:

P

(3)

We now specifythe mean foreach pixelfp tobe a linearcombination ofnearby rnixels

fp'- _ Wip_

where m_ isthe intensityof the ith mixel and w_p isthe mixel-pixelconnection from the

PSF and registrationinformation,normalized tosatisfy_"_i_ip = 1.

The priorprobabilityterm P[Mixels, Pararns]isthe distinctlyBayesian contribution,

and itembodies one's beliefsbeforeseeingthe data about the kinds ofscenes or landscapes

one might observe.Because the number ofauxiliarymodel parameters istypicallyordersof

magnitude fewer than the number ofpixeisor mixels,we can reasonably neglectthe priors

on theseparameters, as they are highlyover-determined.Instead,we use a conditionalprior

P[Mixels[ Params] in the joint(insteadofP[Mixels, Pararns])and seek parameter valuesto

maximize thisnew joint.

For simplicitywe constrain the mixel prior to be a multivariatenormal distribution

over the set of mixel intensities,neglectingany source of priorinformation which can't be

expressed in thisform. Currently we use mean trendsand neighbor correlationswhich are

uniform across the mixel grid.Thus

P [Mixeis IPararns ] -- ./q'[m, i_, C_ 1] _ dm,_
i

(4)

where subscripts{ and j refersto mixels,and A/'[ziI/_,I]ij]denotes the jointmultivariate

normal distributionover some set of zi given means _i and covariancematrix I]ij.Thus

in Eqn. 4 _ isthe average mixel value,C_j isthe inverseof the rnixelneighbor covariance

matrix, and dm_ givesa differentialvolume element.



Note that while multivariate normals are usually described in terms of a covariance _ii,

we here define C_j = E_ .1 to be an inverse correlation. With fractal landscapes, mixels
may be highly correlated with other mixels a large distance away, making it impractical to
directly use a covariance matrix. However, the inverse covariance matrix Cij decays away

more quickly with distance. Even more nicely behaved is the neighbor prediction matrix

aii, defined from

C,j = _., (_,j - 2a,j + E ct,kctj,)
k

where _ij is the delta function. This prediction matrix satisfies a_i = 0 and aij = ctji, and
gets its name from the fact that one can think of the landscape as generated by independent

errors of the form N[m_ [ni, s], where the intensity m_ at each mixel i is best estimated by

n, = E eqjmj "4-_(1 - E _t,j),
j J

a weighted average of intensities at neighboring mixels. In most of our tests we have used

the isotropic values ctij = 1/4, when i and j are the N,S,E and West neighbors, and zero
otherwise.

Our likelihood P[Pixels [ Mixels, Params] = rip N[Ip I _'_., w,pm_, ap]AIp estimates the

Ip as a linear combination of the m_. Therefore, the logarithm of this likelihood is bilinear
in the rni as well as in the usual Ip. Because of this, our likelihood can be re-written as

proportional to a multivariate normal distribution in the m_, since the logarithm of any
multivariate normal distribution Af[zi ]pi, E_J] is bilinear in all its xl.

In terms of the mi then, the total joint we seek to maximize is proportional to a product

of two multivariate normal distributionsma likelihood and a prior term. But since the
sum of two bilinear terms is itself bilinear, this total joint is itself a multivariate normal

distribution

P[Pixeis, Mixels [Params ] = ._'[rr_ Ira;, A_ 1]

with total inverse covariance Aii given by

1 Ewipwjp,

and with a mean and peak m[ given by

1
Z (5)

Since it is a multivariate normal distribution, the value of this joint at its peak is maximized

simply by maximizing the determinant of the matrix Aij.
Thus we can find the maximum posterior mixel grid rn[ given the auxiliary parameters

by simply solving the above matrix equation, Eqn.5 and the determinant of Aij can be used

as a quality measure when choosing values for the auxiliary parameters. The method we use

to actually compute the maximum posterior mixel grid m, is discussed in the next section.

4 Reconstruction Algorithm

The previous section defined the basic MP mixel estimation equations to be solved; here we

show how we solve these equations. The fundamental Catch-22 is that if we knew the true



values of the various parameters (PSF, registration etc.), we could solve the corresponding

MP mixel equations. However, to estimate the necessary parameters to high accuracy, we

would have to know the true mixel grid! Our way around this dilemma is to iteratively

converge on a solution using our current best estimate of the mixels to re-estimate the
necessary parameters, then to use these new parameter estimates to re-estimate a better

mixel grid, and so on; hopefully converging on the MP mixel estimate.

4.1 Initial Registration Parameters

The registration parameters define the correspondence between points on the image plane
and those on the modeled surface, and this is a trigonometric projection function that in

principle varies for each point pair. This is basically a function of the imaging geometry;

the imaging system's optics and its location and orientation relative to the surface. In the
case of Vidicon cameras, there is an additional image distortion due to the read-out process

that cannot easily be distinguished from geometric effects. The registration problem is to

estimate the projection parameters for each image to the mixel grid that captures all these
distortions.

In principle, the optimal MP registration parameters can be estimated using a prior
distribution, and the likelihood of the pixel data given the PSF and the true image. Un-

fortunately, the true image is what we are trying to estimate, so we must initially use a

surrogate. We randomly pick one to the pixel images as our surrogate, and interpolate its
pixel values onto a grid to the desired resolution, as described below. Using this interpolated

mixel grid as the reference, we search for accurate relative registration parameters (an aide

transformation) that maps each image optimally onto the reference grid.
Instead of a MP estimate, we seek a simpler ML estimate, ignoring the parameter priors.

This is rationalized on the basis of the large ratio of information (pixels) to the parameters

that need be estimated. If we assume an independent Ganssian likelihood for each pixel

relative to its projected value from the reference mixel grid, as in Eqn. 3, then finding the ML

estimate of the registration parameters reduces to finding the registration with the smallest
sum of squared pixel differences from their projected values (squared error). In other words,

the optimal registration parameters for an image gives the minimum squared error when

the projected mixe| values are compared to the corresponding mixels through the PSF.

Optimal registration parameters were determined by the Simplex algorithm [1], which

searches for a minima of the squared error by systematically varying the registration pa-

rameters, and then calculating the squared error for each registration. The algorithm stops

when successive squared error values of the trial registrations are indistinguishable. Ini-

tial registration parameters for an image were obtained from its given nominal relation to

the reference image. We found that unless the registration search starts relatively close to

the true registration (good prior information), the search can get trapped in local minima.
There are more efficient search algorithms than the Simplex algorithm, but they are not

generally as robust. Note that previous methods for accurate relative image registration
required locating "features" common to both images and finding a global mapping for all

features to their counterparts in the other image [2]. The method described here uses all

the information in both images, and this is part of the reason for the very high accuracy
(better than 1/10th of a pixel) achieved by the method described here.

The Simplex search procedure presupposes a squared error that is a smooth function of

the registration parameters. Unfortunately, this is not always true due to edge effects. If

a variation of the registration parameters moves part of the pixel image across the model

grid's edge, the likelihood undergoes large irregular variations, due to aliasing. We avoid

this problem by defining a mixel grid border wide enough that no pixels ever reach the

model's edge.



We have some evidence that a full affine transformation is not sufficient to capture all the

distortions that occur in practice in a Vidicon image, but it is a very good approximation

provided that not too large an area is being registered.

4.1.1 Interpolated Reference Grid

The initialreferenceimage isexpanded tothe desiredresolutionand allthe extra gridpoints

between the initialpixelsare interpolatedwith values that are a weighted average of the

neighboring pixels.Initially,we trieda simple bilinearinterpolation,which givessmooth

interpolatedvalues. Unfortunately,this interpolationdid not work well for the following

subtlereason.The interpolatedvaluesare a weighted average of the neighboringpixels,so

they are betterpredictorsofthe mixel valuesthan the pixelsthemselvesbecause ofstatistical

averaging.As a result,the registrationsearchprocedure occasionallybecame "stuck"when

a trialregistrationhappened to align with these interpolatedvalues. An interpolation

function was devised for us by Prof. Chris Wallace2 that largelyavoids thisproblem. It

may be considered as an extension of bilinearinterpolationthat distributesthe expected

erroras uniformly as possibleacrossthe grid.Itwas deduced from the requirementsthat,

within the interpolatedgrid;the interpolationbe everywhere continuous,the firstderivative

be everywhere continuous,the interpolationbe linearwith lineardata,and the interpolation

be equal foruniform data.

In one dimension, ifwe are givenset ofvaluesY_ at a set ofregulargridpointsXi, then

our interpolatedvalues hatY(X) depends on data at the three nearestgrid points:

as long as $= -- X - X_ satisfies -1/2 _ $= < 1/2. The multidimensional form is just the

product of successive single dimension interpolations. The basic unit for interpolation is the

unit point. Within this region, it uses the 3n nearest grid points. On the region boundary,
these factors shift from 3 to 2 for each lost degree of freedom.

4.2 PSF and Other Parameters

The point spread function (PSF) describeshow the energy from an imaged point isdis-

tributed over the image plane. It is usuallydue to the opticalsystem's diffractionand

aberrationpattern. With the scanning electronbeam detectorused in a Vidicon, the PSF

can be extended to model the diffusereadout spot as well. Since the PSF isa function of

the imaging system, itdoes not depend on the particularimage. In practice,the PSF can

vary acrossthe image plane,and with time. We have not attempted tomodel thisvariance,

working with an average PSF derivedfrom the instrument'sbench calibration[3].

"Shading" isthe characteristicsmooth variationin detectorsensitivityacrossthe image

plane inVidicon tubes.It'sequivalentto the variationofindividualcellsensitivitiesinarray

detectors.Shading must be correctedfor inthe likelihoodmodel. The shading functioncan

be learned from the data, given a rough idea of the registration. Since all images contain the

same subregion under similar lighting and viewing angles, any systematic differences in their

appearance must be due to shading. We assume the shading function is a low order 2-D

2Computer Science,Monash University,Australia



polynomial, and currently search for coef_cients which make the subregions have the most
similar mean intensities. These shading coefficients are used to preprocess the subimages

for registration and restoration.
Defects in the optical system or on the image plane generate blemishes common to all

images. A blemish map is used to identify and ignore suspect pixels. Also, in space-based

remote sensing, there are potential errors in data transmission. Random or regular data

blocks may lost, and there are bit errors in the telemetry stream. Lost pixels are mapped

and ignored as blemishes on an individual image basis [4]. Telemetry noise is currently
identified by deviation from neighbors, mapped, and ignored as blemishes.

4.3 Initial Composite

Having found good initial estimates of the basic parameters (PSF, registration parameters
etc.), we next construct a composite mixel grid using information from all the pixel images.
We construct the value of a composite mixel by calculating the "votes" from every pixel

that could effect it, weighted through the PSF. These "votes" are accumulated to give a
total mixel value

-- Zp wiP

for each mL,ceh Clearly, those p_els that are nearest the projected position of a mixel

have the strongest vote for that m_el. For very narrow PSFs, the pixel-mixel "voting"
is almost 1-to-i, but for very diffuse PSFs, each mixel value is the weighted combination

of information from many p_eL% leading to a "blurred" composite. In Fig. 2 (b),(e), the

composite mixel grids under two different PSFs are shown--as can be seen, both composites

are better than the original pixel images.

4.4 Iterative Improvement

Having obtained a reasonable starting composite mixel grid, we next sharpen it up, by

iteratively converging it toward the MP estimate. We use a standard iterative method

(Jacobi's method) to solve the essential matrix equation (5). Our resulting iterative mixel
re-estimation formula is:

#2

= - - - + - ,',..i) (6)

where a is set to obtain a converging, rather than diverging, iteration.

The results of applying this iterative formula to initial composite rnixel grids is shown

in Fig. 2 (c),(f); a noticeable sharpening of the composite is clear. When the rnixel grid
resolution is too coarse, the mixels are overdetermined by the pixels, so the MP mixel

estimate is essentially the same as the ML estimate. In Eqn. (6), this means that the first

(data) term in the numerator dominates the other two (mixel neighbor correlation) terms.
When the mixel grid resolution is large enough (underconstrained by the pixels), the two
terms in the numerator balance each othermi.e, the data term tries to force the mixels to

exactly agree with the data, while the mixel neighbor term tries to make all mixels look

like their neighbors ("smoothing"). It is the tension between these two effects that leads to

plausible images, even when the mixels are underconstrained by the data, as is evident in

Fig. 2 (a,b,c).

In Eqn. 6, all the necessary parameters (s, o', and the registration,. PSF, etc. parameters

that go into _a_v) are assumed known. Some of these parameters, such as the PSF, are



often well known ahead of time. Other parameters, such as the registration, can be initially
estimated from an interpolated version of a single image. Since we find a much more

probable mixel grid as a result of compositing and iteration, we can then re-estimate these
parameters, and even repeat this convergence cycle. Fortunately, this re-estimation is not

needed in practice more than twice. The reason for this is that parameters, such as the

registration parameters, are typically estimated from thousands of pixels in the interpolated

initial mixel grid, and so are already very accurate.

The deviation parameters c and s are more difficult to estimate, as their most probable

values can be many orders of magnitude different from what one might estimate from a
composite. We initially intended to re-estimate these parameters during the iterative con-

vergence cycle from the residual error in each new nfixel grid. But being AI researchers and

not experienced numerical programmers, we did not realize that in some cases this dynamic
re-estimation would result in diverging from the true answer. So now when prior information

is not enough to set these parameters, we must resort to an explicit search. We take a small
but hopely representative patch of an image and seek parameters values which maximize

our quality measure, the determinant of the matrix Aii.

4.5 Results

We give resultsfora cartoonsubjectand forViking Orbiterimages ofMars [5].The cartoon

subjectisa binary image. A dozen pixelimages were generated,with a 4:1 pixelratio(16:1

area ratio),using randomly chosen a/finetransformsand 10% Gaussian noise. These were

composed with the known registrations,and then restoredat a 1:4mixel ratio.This system

isboth underconstrained and relativelynoisy,yet the errorbetween mixels and cartoon

pixelshas been significantlyreduced, as shown in Fig.4.5. Fig. 4.5 shows the true image

from which the pixelsimages were extracted.

The Viking reconstructionusesa seriesof 24 Vidicon images ofMars. We extracted 128

x 128 pixel regions containing the same four prominent craters. These regions represent
the same area to within a few pixeis. The images were preprocessed using the techniques

described in section 4.2. Vidicon blemishes and telemetry noise, were mapped and subse-

quently ignored, the shading response was modeled and used to correct the data, and image

registration used the affme transforms. Restoration was done at a 1:4 mixel scale (1:16 area

ratio), thus the restoration is slightly overconstrained. We leave it to the reader to judge
the restoration's quality.

5 Extensions

In some applications,such as with Landsat and Voyager images, there are multiple images

in differentspectralbands. The 2-D reconstructiondescribed above can be used on each

spectralband separately,to get super-resolvedsurfacesfor each band. However, thisap-

proach ignoresthe factthat the surfacefeaturesare oftenvery similaracrossbands, so even

higher resolutionispossibleifthesecorrelationsare used.

In the above we discussed2-D surfacereconstruction,which isappropriateifallthe im-

ages are from essentiallythe same directionunder the same illuminationconditions.How-

ever,for most of Voyager and Viking data, forexample, thereare many views of the same

surfacetaken from differentdirectionswith differentillumination. The theory described

above can in principlebe extended to handle thiscase as well.The essentialidea isto find

the MP 3-D surfacemodel at a given resolution.This MP model predictsthe observed

images to within the noise level,and balances the fitto the data with priorknowledge of

surfaceproperties,such as continuity,smoothness, textureetc.



A possible approach to 3-D surface modeling is to represent the surface by a latitude-

longitude grid, where each grid point is assigned an elevation, as well as other surface

properties, such as albedo or ground-cover. Ground slope at a grid point can be estimated

from the elevation of its neighbors; whether a grid point is in shadow can be deduced from
the elevation of other grid points and the illumination direction; while illumination from

secondary scattering can also be deduced from knowledge of the surface and illumination
conditions. Given a 3-D surface model, illumination conditions, camera direction etc., it is

possible to deduce what the camera will see. The Bayesian approach described above can
be used to invert this process and find the most probable 3-D surface model that could have

generated the images. This inversion process separates out the effects due to ground slope
from those due to different albedos. This is possible because the effects of parallax vary

independently of effects due to surface albedo. Note that representing the surface reflectivity

by a single scalar (albedo) is an approximation that assumes Lambertian (cosine) scattering.

Many real surfaces are not Lambertian, so using more complicated bi-directional reflectance

parameters, including a specular reflectance component, would give a more accurate surface
model.

The above 3-D surface model assumes that the surface itself does not change between

successive images, but this is not true for dynamic situations, such as a TV camera observing

moving people. While it is possible in principle to develop dynamic 3-D surface models so
that super-resolution reconstructions can be performed for them, this much harder than the

static case. However, such an extension would make it possible to get high definition TV
from standard resolution cameras.

In all the above discussion, it was assumed that the multiple images captured by the

camera were not significantly blurred by diffraction effects. When this is true, intensities
contributed from different mixeis are added to give the resulting pixel estimate (a linear

model). If the phase of the signal from different mixeis causes interference effects when they

are combined (i.e. adds amplitudes not intensities) then the linear theory is not applicable.

This situation applies to diffraction blurred microscope or telescope images, as well as various

radar and sonar image problems, where the conventional wisdom is that it is not possible to

break the Rayleigh lirnit--i.e, super-resolution is impossible. We believe that it/8 possible
to extend the theory above to cover the diffraction case as well, so that in principle super-

resolution is possible.

If the approach in this paper is changed from adding the intensities of different mixels to

get a pixel estimate, to adding amplitudes instead; the resulting equations are again linear.

Unfortunately, we cannot observe amplitudes, only amplitudes squared (i.e. intensities), so

that the inversion problem in the diffraction case is inherently nonlinear. One way around

this diffÉculty might be to do the calculations using amplitudes, and use the square root

of the observed pixel intensities as the observational data. Because the square root has an

ambiguous sign, prior knowledge, such as neighboring amplitudes probably have the same

sign can be used to assign signs to the pseudo-observational amplitudes.

6 Relation to Previous Work

The research reported in this paper was mainly motivated by attempts to integrate informa-

tion from Landsat images taken on different passes. The difficulty here is that such images

did not exactly overlay each other, so pixel-to-pixel comparison is not possible. A standard

approach to this problem is _rubber-sheeting', which attempts to fit one image grid to

another (reference) grid by resampling the first image onto the reference grid. Reference

grid points are mapped, through an appropriate transform, onto the new image, and new

grid elements are computed by taking an area weighted average of the overlain image pixels.
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Theresultingresampledgridisperfectlyalignedwith thereference grid. The technique is

extensively used to rectify and rotate Landsat and similar images to fit the geographical

survey grid.
From the Bayesian perspective, the rubber-sheeting approach makes little sense, because

the new averaged "pixels" are not actual observations, nor are they a surface model. In ad-
dition, the averaging process destroys information--it is impossible to recover the original

image from the rubber-sheeted image. This loss of information makes pixel-by-pixel compar-
ison very dubious. The super-resolved surface modeling described in this paper does allow

the integration and comparison of information from many images through the accumulated

super-resolution surface model.
A related approach to the Bayesian 3-D surface reconstruction described above is called

"Shape from Shading" [6]. This approach integrates observed surface intensity gradients

from a single image to give a 3-D elevation model of the generating surface. There is also a

strong constraint due to surface continuity. This approach assumes a constant albedo and
known illumination conditions. Shape from shading can be extended to multiple images

[7], and the result is greater detail in the elevation map because each grid point contains
information from multiple images. However, the constant albedo assumption is a strong

limitation on the ability to extract information from multiple images.

A Bayesian approach very similar to ours is described in [8]. This approach does 3-

D surface reconstruction using multiple images from different viewpoints, and a neighbor
correlation prior with a Gaussian noise model. The representation of the surface is 2-D

patches on a 3-D curved surface. Unlike our work, these authors assume smooth large scale

objects that can be represented by large parameterized "surface patches". Because these

patches are estimated from many pixels from many images, the parameters that describe
them are accurately determined, and so the overall surface is accurately estimated. In our

approach we achieve super-resolution, and there is no aggregation of surface mixels into

large scale patches. Although our goals and assumptions are significantly different we use
the same basic Bayesian approach.

7 Summary and Discussion

In this paper we have developed the Bayesian maximum posterior probability approach for
super-resolved 2-D surface reconstruction from multiple images. We have also developed an

algorithm for iteratively converging on the maximum probability estimate of the surface,

and show results of applying this algorithm to a some images. Although we expected this

approach to achieve super-resolution, we were surprised by how much spatial improvement

was possible. In addition to improved spatial resolution, there is also improved grey-scale
resolution in the reconstructed surface because of statistical averaging. The Bayesian ap-

proach can achieve a resolution higher than that for maximum likelihood, because it uses a

neighbor correlation prior to pick out the smoothest image compatible with the data. This
approach also is open to incorporating more sophisticated surface prior information, such

as texture, edges, regions, etc.
Our 2-D approach can be extended to reconstructing super-resolved 3-D surface, but the

surface models are much more complex than for 2-D. A possible application of this is to

achieve high definition television by integrating the information between frames. It is also

possible to extend this approach to _unblurring" diffraction blurred images, such as from

microscopes or telescopes, although this extension requires difficult nonlinear mathematical
extensions. This means that it is possible to resolve objects finer than the wavelength of

the light used to observe them.
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'l_' (a) 12 raw pixel imagessimulated by sampling true image v(d) 24 pixel images
extracted from Viking Orbiter frames

(b) Initial composite
(e) Initial composite

(c) Iterative reconstruction
sharpens features.

Figure 2:

(f) Iterative reconstruction removes pixel
graininess without blurring features.

Surface Reconstruction








